Deploying remote GPU virtualization with rCUDA

Federico Silla

Technical University of Valencia Spain

What is "remote GPU virtualization"?

It deals with GPUs, obviously!

HPC ADMINTECH 2016 3/53

Basics of GPU computing

Basic behavior of CUDA

HPC ADMINTECH 2016 4/53

Remote GPU virtualization

HPC ADMINTECH 2016 5/53

Remote GPU virtualization

A **software** technology that enables **a more flexible use of GPUs** in computing facilities

HPC ADMINTECH 2016 6/53

Basics of remote GPU virtualization

HPC ADMINTECH 2016 7/53

Basics of remote GPU virtualization

HPC ADMINTECH 2016 8/53

Remote GPU virtualization envision

Remote GPU virtualization allows a new vision of a GPU deployment, moving from the usual cluster configuration:

Physical configuration

to the following one:

Logical configuration

Why is "remote GPU virtualization" needed?

Which is the problem with GPU-enabled clusters?

Characteristics of GPU-based clusters

- A GPU-enabled cluster is a set of independent self-contained nodes that leverage the shared-nothing approach:
 - Nothing is directly shared among nodes (MPI required for aggregating computing resources across the cluster, included GPUs)
 - GPUs can only be used within the node they are attached to

First concern with accelerated clusters

- Applications can only use the GPUs located within their node:
 - Non-accelerated applications keep GPUs idle in the nodes where they use all the cores

A CPU-only application spreading over these four nodes would make their GPUs unavailable for accelerated applications

HPC ADMINTECH 2016

Second concern with accelerated clusters

- Applications can only use the GPUs located within their node:
 - non-MPI multi-GPU applications running on a subset of nodes cannot make use of the tremendous GPU resources available at other cluster nodes (even if they are idle)

HPC ADMINTECH 2016

One more concern with accelerated clusters

- Do applications completely squeeze the GPUs available in the cluster?
 - When a GPU is assigned to an application, computational resources inside the GPU may not be fully used
 - Application presenting low level of parallelism
 - CPU code being executed (GPU assigned ≠ GPU working)
 - GPU-core stall due to lack of data
 - etc ...

GPU usage of GPU-Blast

HPC ADMINTECH 2016 16/53

GPU usage of CUDA-MEME

HPC ADMINTECH 2016 17/53

Why performance in GPU clusters is lost?

In summary ...

- There are scenarios where GPUs are available but cannot be used
- Accelerated applications do not make use of GPUs 100% of the time

In conclusion ...

GPU cycles are lost, thus reducing cluster performance

We need something more in the cluster

The current model for using GPUs is too rigid

What is missing is ...

... some flexibility for using the GPUs in the cluster

We need something more in the cluster

The current model for using GPUs is too rigid

What is missing is ...

... some flexibility for using the GPUs in the cluster

A way of seamlessly sharing GPUs across nodes in the cluster (remote GPU virtualization)

Remote GPU virtualization envision

HPC ADMINTECH 2016

Remote GPU virtualization frameworks

Several efforts have been made to implement remote GPU virtualization during the last years:

• rCUDA	(<u>CUDA 7.0</u>)	remote CUDA
 GVirtuS 	(CUDA 3.2)	Publicly available
• DS-CUDA	(CUDA 4.1)	
• vCUDA	(CUDA 1.1)	
• GViM	(CUDA 1.1)	
• GridCUDA	(CUDA 2.3)	NOT publicly available
• V-GPU	(CUDA 4.0)	

HPC ADMINTECH 2016 22/53

Cons of "remote GPU virtualization"?

Problem with remote GPU virtualization

The main drawback of GPU virtualization is the reduced bandwidth to the remote GPU

HPC ADMINTECH 2016

Using InfiniBand networks

HPC ADMINTECH 2016 25/53

Optimized transfers within rCUDA

rCUDA optimizations on applications

- Several applications executed with CUDA and rCUDA
 - K20 GPU and FDR InfiniBand
 - K40 GPU and EDR InfiniBand

HPC ADMINTECH 2016 27/53

Pros of "remote GPU virtualization"?

1: more GPUs for a single application

GPU virtualization is useful for multi-GPU applications

Only the GPUs in the node can be provided to the application

Interconnection Network

Without GPU virtualization

With GPU virtualization

Many GPUs in the cluster can be provided to the application

HPC ADMINTECH 2016

1: more GPUs for a single application

64/ GPUs!

```
🔞 🖨 🕕 bsc19421@nvb127:~
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 64 CUDA Capable device(s)
Device 0: "Tesla M2090"
                                                 5.0 / 5.0
  CUDA Driver Version / Runtime Version
 CUDA Capability Major/Minor version number:
                                                 2.0
  Total amount of global memory:
                                                 6144 MBytes (6442123264 bytes)
                                                 512 CUDA Cores
  (16) Multiprocessors x ( 32) CUDA Cores/MP:
  GPU Clock rate:
                                                 1301 MHz (1.30 GHz)
  Memory Clock rate:
                                                 1848 Mhz
 Memory Bus Width:
                                                 384-bit
 L2 Cache Size:
                                                 786432 bytes
 Max Texture Dimension Size (x,y,z)
                                                 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)
 Max Layered Texture Size (dim) x layers
                                                 1D=(16384) x 2048, 2D=(16384,16384) x 2048
 Total amount of constant memory:
                                                 65536 bytes
 Total amount of shared memory per block:
                                                 49152 bytes
 Total number of registers available per block: 32768
 Warp size:
                                                 32
 Maximum number of threads per multiprocessor:
                                                 1536
 Maximum number of threads per block:
                                                 1024
 Maximum sizes of each dimension of a block:
                                                 1024 x 1024 x 64
 Maximum sizes of each dimension of a grid:
                                                 65535 x 65535 x 65535
 Maximum memory pitch:
                                                 2147483647 bytes
 Texture alignment:
                                                 512 bytes
 Concurrent copy and kernel execution:
                                                 Yes with 2 copy engine(s)
 Run time limit on kernels:
                                                 No
 Integrated GPU sharing Host Memory:
                                                 No
 Support host page-locked memory mapping:
                                                 No
 Alignment requirement for Surfaces:
                                                 Yes
 Device has ECC support:
                                                 Disabled
 Device supports Unified Addressing (UVA):
                                                 Yes
 Device PCI Bus ID / PCI location ID:
                                                 2 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Tesla M2090"
  CUDA Driver Version / Runtime Version
                                                 5.0 / 5.0
```

HPC ADMINTECH 2016 30/53

1: more GPUs for a single application

MonteCarlo Multi-GPU (from NVIDIA samples)

2: busy CPU cores do not block GPUs

Physical configuration

Logical configuration

 Let's suppose that a cluster without GPUs needs to be upgraded to use GPUs

- GPUs require large power supplies
 - Are power supplies already installed in the nodes large enough?
- GPUs require large amounts of space
 - Does current form factor of the nodes allow to install GPUs?

The answer to both questions is usually "NO"

Approach 1: augment the cluster with some CUDA GPU-enabled nodes → only those GPU-enabled nodes can execute accelerated applications

HPC ADMINTECH 2016 34/53

Approach 2: augment the cluster with some rCUDA servers → all nodes can execute accelerated applications

HPC ADMINTECH 2016 35/53

- Dual socket E5-2620v2 Intel Xeon + 32GB RAM + K20 GPU
- FDR InfiniBand based cluster

16 nodes without GPU + 1 node with 4 GPUs

HPC ADMINTECH 2016 36/53

3: cheaper cluster upgrade

- Applications used for tests:
 - GPU-Blast (21 seconds; 1 GPU; 1599 MB)
 - LAMMPS (15 seconds; 4 GPUs; 876 MB)
 - MCUDA-MEME (165 seconds; 4 GPUs; 151 MB)
 - GROMACS (167 seconds)
 - NAMD (11 minutes)
- Set 2

Set 1

- BarraCUDA (10 minutes; 1 GPU; 3319 MB)
- GPU-LIBSVM (5 minutes; 1GPU; 145 MB)
- MUMmerGPU (5 minutes; 1GPU; 2804 MB)
- Three workloads:
 - Set 1
 - Set 2
 - Set 1 + Set 2

- Three workload sizes:
 - Small (100 jobs)
 - Medium (200 jobs)
 - Large (400 jobs)

Short execution time

Long execution time

3: cheaper cluster upgrade

HPC ADMINTECH 2016 38/53

4: GPU task migration

- Box A has 4 GPUs but only one is busy
- Box B has 8 GPUs but only two are busy

- Move jobs from Box B to Box A and switch off Box B
- 2. Migration should be transparent to applications (decided by the global scheduler)

Migration is performed at GPU granularity

4: GPU task migration

Job granularity instead of GPU granularity

HPC ADMINTECH 2016 40/53

5: virtual machines can easily access GPUs

- The GPU is assigned by using PCI passthrough exclusively to a single virtual machine
- Concurrent usage of the GPU is not possible

Computer hosting several KVM virtual machines

HPC ADMINTECH 2016 41/53

5: virtual machines can easily access GPUs

HPC ADMINTECH 2016 42/53

5: virtual machines can easily access GPUs

FDR InfiniBand + K20 !!

HPC ADMINTECH 2016 43/53

What happens at the <u>cluster level</u>?

rCUDA at cluster level ... Slurm

- GPUs can be shared among jobs running in remote clients
 - Job scheduler required for coordination

HPC ADMINTECH 2016 45/53

Applications for studying rCUDA+Slurm

- Applications used for tests:
 - GPU-Blast (21 seconds; 1 GPU; 1599 MB)
 - LAMMPS (15 seconds; 4 GPUs; 876 MB)
 - MCUDA-MEME (165 seconds; 4 GPUs; 151 MB)
 - GROMACS (167 seconds)
 - NAMD (11 minutes)

Set 2

Set 1

- BarraCUDA (10 minutes; 1 GPU; 3319 MB)
- GPU-LIBSVM (5 minutes; 1GPU; 145 MB)
- MUMmerGPU (5 minutes; 1GPU; 2804 MB)
- Three workloads:
 - Set 1
 - Set 2
 - Set 1 + Set 2

- Three workload sizes:
 - Small (100 jobs)
 - Medium (200 jobs)
 - Large (400 jobs)

Short execution time

Long execution time

Test bench for studying rCUDA+Slurm

- Dual socket E5-2620v2 Intel Xeon + 32GB RAM + K20 GPU
- FDR InfiniBand based cluster

Increased cluster performance with Slurm

HPC ADMINTECH 2016 48/53

Increased cluster performance with Slurm

HPC ADMINTECH 2016

... in summary ...

Pros and cons of rCUDA

Cons:

1. Reduced bandwidth to remote GPU (really a concern??)

• Pros:

- 1. Many GPUs for a single application
- 2. Concurrent GPU access to virtual machines
- 3. Increased cluster throughput
- 4. Similar performance with smaller investment
- 5. Easier (cheaper) cluster upgrade
- 6. Migration of GPU jobs
- 7. Reduced energy consumption
- 8. Increased GPU utilization

rCUDA is a development by Technical University of Valencia

Get a free copy of rCUDA at

http://www.rcuda.net

More than 650 requests world wide

rCUDA is a development by Technical University of Valencia

HPC ADMINTECH 2016 52/53

Thanks! Questions?

rCUDA is a development by Technical University of Valencia

HPC ADMINTECH 2016 53/53